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It is required to determine the contour of a part of a body in contact 
with incompressible liquid from a, given impact pressure. Let us examine 

the two dimensional case of a liquid with infinite depth. The abscissa 

is assumed to be along the surface of the liquid and the ordinate is 

pointed vertically downward. Let the body intersect the abscissa axis at 

x= + 1. The velocity potential 4) is related to the impulse pressure p, 
by $,p= - pt where p = density of the liquid. Therefore, for any given 

pressure along the contour L there is a corresponding potential d. 

Let the projections of velocities upon the axes of coordinates by a0 

and vO, and the angular velocity wn, then the stream function S/J along L 
will be [ II 

In formulating the reverse problem, let us assume that au, vO and on 

are given. 

The choice of given C/J along L depends upon the character of the motion 

of the body in the interval of time immediately after the shock. 

First case. Let on = 0, a0 = 0. Let us assume that 95 is given as a 

function of X: 

VI, = %Q (x)* (-f<r<l), (n(+l)--o) (2) 

From (1) it follows that I/~ = - VEX. Therefore, to the region B filled L 
with the flow, in the plane W, there is a corresponding region RIP, limited 

by the vertical segment C$ = 0, [!“I < vu, representing the free surface of 

the liquid and by the curve L conformable to the unknown contour, the 
parametric equation of which ;s (G = u,fl(xl, I!’ = - vnx. Let us construct 
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the function w = w(l), which maps the loser semi-plane Im [ < 0 upon the 

region BW so that the points 5 = ?. 1 are transformed into w = + ivO, and 
L=ca into w = 0. Now, the function m (<) = z[ w (5) 1 is easily deter- 

mined, Indeed, for the 3 (0 we have the following conditions for the 

contour: 

1:c (D (5) z lm rT) (E) = 0 (<<--I. 5> 1) (::) 

The function r) can be expressed through 4 from the equation $5 = iI,% = 

ID(<). 

Using the Keldysh-Sedov formula and noting that 3 (0 = 0 (0 when 

[+ *c-J, we obtain: 

where C is an arbitrary real constant. 

Example. If $z& = - vo.\/ 1 - x2. the contours form a family of ellipses 

with the common semi axis - 1 < x < 1, y = 0 and with a variable other 

semi axis. This family includes the unit circle and also a flat plate. 

Second Case. Let w0 = 0 but uO f 0. Let us assume that u02 + v02 = 1, 

and introduce a new system of coordinates 

The potential c;$ along the unknown contour L, as a function of x* is 

given by 

QI. = R (z*) (.5) 

Fo r ~,‘lr, in this case we have the condition ~,‘r~ = - x*. As in the first 

case, for the function Z* = X* + iy’ = ?, (0 which maps Im [ < 0 upon the 

region filled by streamflow, we obtain the following boundary condition: 

%‘--~(~)(-l<~<l), 3;*uo - y*ro = 0 (E<- 1, 5>1) 

This boundary value problem is a particular case of Hilbert’s solution 

with discontinuous coefficients 121 

13~ {IQ (4) + ib (5)1@ (4)) = g (5) 

where 
g (4) = - GJ (4). n (5) = 1, b(5) = 0 (--1 <[<I) 

0 (5) = uo. b (5) = 00’ g(5) = 0 (E<--1. t;>i) 

This can be reduced to the problem of linear conjugate 
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(7) 

(a = arg (a0 + iv,) 

If the functions cb+ (0 and cb- ([) are regular respectively within the 

upper and the lower semiplanes, satisfy the boundary condition (7) and 

are related by 
_- 
@+ (5) = Q- (5) 

then the function @- (6) will be the solution of the boundary value 

problem (6). The solution of problem (7) can be obtained by utilizing the 

general theory of boundary value problems with discontinuous coefficients 

[ 2,3]. The solution bounded at the points 5 = f 1, of the order 0 (5) 

when 5 + f OQ and satisfying condition @+ (6) = (o- (c)I wil1 be’ 

(C is real)* 

for a given distribution of impulse pressure there is a 

family of monoparametric contours. Formula (8) gives the 

Therefore, 

corresponding 

solution for the case when u 6 = ‘6 = 0, which was examined above. 

Third Case. Let 09 f 0, and assume that potential $ of the unknown 

contour is a function of distance to the instantaneous center of rotation 

of the body 

tD- (5‘) =a)(() = (C + i)‘(C- *)l-'[ieiaC + QoO- (C)j 

l 4 CT) 
a 

~0(5)=-'~i S ?-_c(‘f I) -’ (7-1) 
-1+f- 

= d7 

-1 

(6) 

‘PL = fi Cl/@ + ~o/@“)2 + (Y --uo/~o)* 

The condition (9) in conjunction with (1) determines in the plane IO, 

the image of the curve of the contour Lz. (It is assumed that all the 

points of the contour are at various distances from zO = - vo/w,, + iuO/w,,, 

l The branch (6 f l)a’n ([ - 1)1-a’n of this many values function is 

regular in the plane of the cuts along abscissa axis - = < 4 < - 1 and 

1 < 4 < m and real on the lower boundary of the right cut. 
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or the contour is composed of segments satisfying this con&tion.) As 

before, let us map the region Bw upon the lower semi-plane Im c < 0 and 

examine the function F(c) = cb (5) - z,, where @ (0 = z[ I ([)I. The bound- 

ary condition for F(c) is: (- l<C<l, 

In3 F (4) = - 2 (4<--1. f>l) (10) 

Therefore, we obtain a nonlinear boundary value problem for the func- 

tion F(c), regular in the lower half-plane and of the order of OC<) when 

z -t j: DJ. In the case when uO = 0, i.e. zO is located on the abscissa axis, 

the problem is easily linearized and solved. Let us assume that zO lies 

between the points c = - 1 and 4 = 1. Let 

Then 

Im Fi (5) = 0 

Re Fi (4) = 

F,(C)=O(InC) nps3 z--+00 

The solution of this boundary value problem is the following function 

where 

f-1 (cl = In K + fFT+ VP-1 - ’ C(T) d-r 

ni s Jf/ra T---c 
-1 

and for rf<l me obtain 

Let us note that the above solution does not hold when IQ = 0, since 

in this case, the method of assigning (b along the contour must be altered. 

If u. f 0, the boundary value problem (10) reduces to a nonlinear singular 

integral equation. Let F2 (0 = iF(cl , then 

IF2 WI = h (5) for-l<t<i, ReF2([)=uo/oo for [<--I R t>i 

Putting @it) = ang F2(&, then utilizing the Schwartz integral, we ob- 
tain for - 1 < 6 < 1 the equation: 
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The results obtained when wO = 0 can be applied to the cases of the 

impact of several bodies, as well as for a liquid of a finite depth, 

provided that the boundary is made of straight line segments. 
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